안테나 기술

2006. 11

연세대학교 전기전자공학과
윤 영 중
CONTENTS

❖ 안테나 및 전파전파 기 본 이론
❖ 방송 시스템의 종류 및 발전 방향
❖ 방송 시스템용 안테나
❖ 방송수신 소형 단말기용 내장형 안테나
❖ DIVERSITY & MIMO
❖ 결 론
안테나 및 전파전파
기본 이론
WHAT IS AN ANTENNA?

- **Antenna의 정의**
 - A usually metallic device for radiating or receiving radio waves (Webster Dictionary)
 - A means for radiating or receiving radio waves (IEEE Std 145-1983)

\[
\nabla \times E = -j \omega \mu H + M \\
\nabla \times H = j \omega \varepsilon E + J \\
\n\nabla \cdot D = \rho \\
\n\nabla \cdot B = 0
\]
TYPES OF ANTENNAS

- Wire antennas
 - Dipole antenna, Monopole antenna, Loop antenna, Helical antenna

- Aperture antennas
 - Horn antenna, reflector antenna, slot antenna

- Planar Antennas
 - Microstrip Antennas, Stripline Antennas

- Broadband antenna
 - Log-periodic antenna, spiral antenna, traveling wave antenna

- Array Antennas

- ETC
 - Yagi-Uda antenna, PIFA, small antenna...
다이폴 안테나(Half wave dipole antenna)

- 일반적으로 가장 많이 사용되는 안테나
- 전체 길이가 약 반파장(\(\lambda /2 \)) 길이를 가짐
- Electric field and magnetic field

\[
E_\theta \approx j \eta \frac{I_0 e^{-jkz}}{2\pi r} \left[\cos \left(\frac{kl}{2} \cos \theta \right) - \cos \left(\frac{kl}{2} \right) \right], \quad H_\theta \approx \frac{E_\theta}{\eta}
\]

- 편파: 수직 선형편파
- 입력 임피던스 \(Z_{in} = 73 + j42.5 [\Omega] \)
- 지향성 \(D_0 = 1.64 = 2.15 [dB] \)
- 10% 이상의 대역폭을 가진다.
- 안테나의 길이가 길어질수록 빔폭이 작아지고 지향성이 커진다
MONOPOLE ANTENNA

- **Monopole antenna**

 - 방사체와 ground로 구성된 안테나
 - Image theory에 의하여 dipole과 같은 동작원리를 가짐
 - electric field 및 radiation pattern이 dipole antenna와 같다
 - 안테나에 입력되는 전류의 값은 일정하지만 radiating power는 절반이다
 - 입력 임피던스는 다이폴의 절반 (36 + j21.3[Ω])
 - 지향성은 다이폴의 두배
 - 안테나의 크기가 다이폴 안테나의 절반이기 때문에 파장이 매우 긴 중파(MF) 송신등에 사용됨
Loop antenna

- Circle, rectangle square, triangle ellipse, etc.
- Loop의 원주 길이는 약 1λ 임
- Electric field and magnetic field

$$E_\phi \approx j\frac{ak\eta I_0 e^{-jkr}}{2r} J_1(ka \sin \theta), \quad H_\theta \approx -\frac{E_\phi}{\eta}$$

- 편파 : 수평 선형편파
- 지향성 : $D_0 \approx 4\pi \frac{2ka(0.584)^2}{2\pi} = 0.682 \left(\frac{C}{\lambda} \right)$

- Small loop인 경우 dipole antenna와 같은 방사패턴을 가지지만 loop의 크기가 커지면 bidirectional pattern을 가진다.
- Small loop에서 방사저항을 증가시키기 위하여 turn수를 증가시켜 사용함

$$R_r = \eta \left(\frac{\pi}{6} \right) \left(\frac{k^2 a^2}{2} \right) N^2 = \eta \frac{2\pi}{3} \left(\frac{kS}{\lambda} \right)^2 N^2$$
Folded dipole antenna

- Dipole antenna를 구부린 형태
- 크기는 halfwave dipole antenna와 비슷함
- Field와 pattern은 dipole antenna와 같음
- 방사되는 파워가 네 배가 되기 때문에 안테나의 입력
 임피던스는 4배가 됨

\[
P_f = \frac{1}{2} I_f^2 Z_f = P_d = \frac{1}{2} I_d^2 Z_d \\
I_f \approx 0.5I_d \implies Z_f \approx 4Z_d
\]

- 주로 안테나의 임피던스를 증가시키기 위한
 방법으로 사용됨
Array antenna

- 일반적으로 하나의 안테나로는 높은 이득을 얻을 수 없다
- 안테나의 이득을 증가시키기 위해선 안테나의 크기가 커져야 한다
- 하지만 이때 제작상의 어려움이 발생한다
- 따라서 여러 개의 안테나를 이용하여 array를 구성함으로써 안테나의 이득을 높일 수 있다.
- 각 element에 입력되는 신호의 크기와 위상을 조절하여 main beam의 모양이나 방향을 조절할 수 있다 ← smart antenna

Array factor

- array antenna pattern
 = single element pattern x array factor
- Normalized array factor (N-elements)

\[
AF_n = \frac{1}{N} \left[\frac{\sin(N\psi/2)}{\sin(\psi/2)} \right] \cong \left[\frac{\sin(N\psi/2)}{N\psi/2} \right] \text{ for all small } \psi
\]
YAGI-UDA ANTENNA

❖ Yagi-Uda antenna

- 1926년 일본에서 Uda가 처음으로 개발
- 매우 간단한 구조와 상대적으로 높은 이득
- Driver : 신호가 입력되는 소자.
 일반적으로 dipole antenna를 사용함
- Director : driver보다 약간 긴 길이가 짧음
 간격은 약 0.2 ~ 0.35λ
 빔을 모아주어 이득을 높임
- Reflector : driver보다 약간 길다
 간격은 약 0.15 ~ 0.25λ
- 각 elements의 길이와 간격을 잘 조절해
 15dBi 이상의 높은 이득을 얻을 수 있다.
- TV 수신용 안테나로 많이 사용됨
Log-periodic antenna

- 간단한 구조로 매우 넓은 대역폭을 얻을 수 있습니다
- 임피던스 및 방사특성이 주파수의 대수로서 주기적으로 반복하는 구조적 형태를 가진 안테나
- 안테나 특성이 중심 주파수에 따라 크게 변하지 않아 주파수 독립 안테나로 간주된다
- 안테나의 길이와 간격이 log scale로 증가함
- VHF대역 및 UHF대역을 동시에 수신할 수 있도록 log-periodic antenna가 수신안테나로 사용됨
Superturnstile antenna

- 2개의 batwing antenna를 직각으로 교차시킨 것
- 90°의 위상차로 급전함
- 수평 방향의 복사전력을 크게 한 무지향성 안테나, 광대역 특성
- 세계 각국에서 사용되는 대표적인 VHF TV 송신 안테나
- Batwing antenna는 수평 다이폴과 같은 방사패턴을 가짐
- 따라서 수평 방향으로 omni-directional 하기 위하여 superturnstile로 변형시킴
REFLECTOR ANTENNA

- **Reflector antenna**
 - 반사판을 이용하여 높은 이득을 얻을 수 있음
 - Radio astronomy, satellite tracking, microwave communication

- **Types of reflector antenna**
 - Plane, corner, curved (spherical, especially paraboloid)
 - Cassegrain, Gregorian reflector antenna
 - Offset reflector antenna

- 포물면 반사판 안테나의 구조
 - 포물면의 초점에 급전 → 반사파는 평면파로 진행
 - 반사파의 곡률과 반사판 테두리 까지의 관계
 \[\frac{f}{d} = \frac{1}{4 \tan \frac{\theta}{2}} \]
 - \(d\) 값의 증가 → 안테나 이득의 증가
 - \(f/d\) 값의 증가 → 교차편파 감소, 좁은 급전패턴
Image theory

- 지표면이 infinite ground 역할을 하기 때문에 image source에 의해 안테나 pattern이 변함
- Antenna가 수평편파인지 수직편파인지에 의하여 안테나의 radiation pattern이 변함
- 기지국을 세울 때 Image source에 의한 영향을 고려해야 한다
전파전파 (wave propagation)

- 전파: 직진, 반사, 투과, 굴절, 회절, 산란
- Surface Waves (지표파)
 - 지구 표면을 따라 전파, 거리에 따라 급격히 감소
 - 수백 mile 이내에서 2~3 MHz 이하 사용
- Space Waves (공간파)
 - line of sight
 - 경로상의 장애물, 지표면 등에 의해 반사, 굴절, 산란 현상
 - direct wave, reflected wave, diffracted wave, scattered wave 등 발생
 - FM, TV, Mobile Comm., Microwave Comm.
- Sky Waves
 - 전리층(Ionosphere)에 의해 반사 또는 굴절됨
 - 기후에 따라 전리층 특성 변화 (D, E, F1, F2층)
 - 불특정 다수를 상대로 수십 MHz 이내 사용.
- Satellite Waves
 - 전리층 통과, high frequency
 - high path-loss due to long path and rain attenuation
전파전파

HF waves at night
F2층에서 반사
약 250 ~ 300 km

HF waves at day
F1 층에서 반사
약 200 km

MF waves
E1층에서 반사
약 100 km

LF waves
D층에서 반사
Dir 60 km

F2 region
F1 region
E1 region
D region
전파전파 (wave propagation)

전파전파
- 안테나와 안테나 사이에 존재하는 전파 매체(일반적으로 대기)의 특성을 연구하고 이를 통해 통신 성능 향상을 연구하는 분야
- 전파는 대기, 지면, 해면에 영향을 받고 주파수에 따라 영향력이 다름
- 최적의 송신단 설계 및 음영지역을 제거하기 위해서 필수적인 학문

과거의 전파전파
- 장거리 통신을 위해 대기 및 지면, 해면 등의 환경 고려
- 장거리 통신 : 대륙간 통신, 항공기 항법 및 통신, 위성과 지상간 통신

최근의 전파전파
- 단거리 통신을 위해 대기, 건물, 지형, 이동체 등의 환경 고려
- 단거리 통신 : 개인 이동 통신, 실내 무선 랜

VHF, UHF, SHF의 전파전파
- TV나 FM 방송망 설계 및 서비스 개선을 위하여 전파의 특성 분석 필요
- 지형에 따른 영향, 지물에 따른 영향, 기상에 따른 영향이 지배적인 요소
전파전파 (wave propagation)

- 채널 모델
 - Ground Wave = direct wave + reflected wave + surface wave
 - 주변환경, 기후 등에 따라 변화 ⇒ 정확한 예측 불가능
 - 많은 실측치를 기초로 한 통계적 처리에 의한 예측 ⇒ 다양한 환경에 적합한 통계적 예측모델 개발 필요.

- 경험적 모델 (stochastic model)
 - 장 : 모델이 생성된 환경과 비슷한 환경이면 바로 사용가능
 - 단 : 수많은 측정자료가 요구됨, 추측 통계적이므로 어느 정도 오차는 생김
 - 예 : Walfish-Ikagami model

- 이론적 모델 (analytic model)
 - 장 : 물리적, 전자기적 특성을 고려한 정확한 계산에 의해 얻어짐
 - 단 : 계산시 사용된 환경과 실제 환경이 다를 경우 신뢰도가 떨어짐
 환경이 복잡하고 환경 변수가 많을수록 계산 속도가 느려짐
 - 예 : ray-tracing 에 의한 실내 환경 채널 모델